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Summary. Rarefied gas flow in micro-channels/pipes which height/radius is 
measured in micro- or nanometers is treated in the paper. Knudsen number in these 
geometries may vary from very low values present in the continuum flow to very 
large values pertinent to the free molecular flow. In order to cover the entire 
Knudsen number range with a single physical model we model the wall slip 
boundary condition by means of a fractional derivative, whereby its order 
conveniently depends on the local value of the Knudsen number in the channel flow, 
or on an average value of this number in the pipe flow. Excellent agreement with 
both experiments and the results of numerical simulations is achieved. 
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1 INTRODUCTION 

 
Due to both their practical importance and theoretical attractiveness several 

problems of rarefied gas dynamics have drawn much attention in the literature recently. 
This particularly holds for internal gas flows encountered in low-pressure or vacuum 
environments as well as in micrometer or sub-micrometer size geometries at standard 
atmospheric conditions. Applications in the first category include devices used in 
hypersonic flight, and several types of vacuum instruments, e.g., ionization gauges, partial 
pressure and residual gas analyzers, while applications in the second category are 
encountered in micro-electromechanical systems (MEMS), and include small 
accelerometers, pressure sensors, micro actuators, etc. Several new fabrication techniques 
have been developed in order to make the application of these devices in our everyday life 
possible (for a review on the variety of MEMS devices and fabrication techniques, s. [1]). 
  The flow of a gas in a MEMS device, e.g. in a micro-channel, or in a micro-pipe 
is characterized by the rarefaction effect, which consists in the fact that the Knudsen 
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number Kn=
β
λ

, where λ  is the mean free path of the molecules and β  is some 

characteristic length scale (the height h  of the channel, or the radius a  of the tube), is not 
small enough so that continuum hypothesis does not hold. As a consequence gas slips 
along the channel walls, and classical no-slip boundary conditions cannot be employed. As 
a rule of thumb, for 310Kn −<  the fluid can be considered as a continuum, while for 

10Kn >  the fluid flow is considered as a free molecular flow. Between these two 
extreme regimes of flow further classification is needed, i.e. slip-flow for 

1.0Kn10 3 <<−  and transition flow for 10Kn1.0 << . Particular attention in the 
formulation of boundary conditions was paid to slip-flow regime by Beskok et al. [2] for 
both pressure driven and shear driven flow. Based on an approximate analysis of the 
motion of a monatomic gas near an isothermal surface they defined a high-order boundary 
condition, which allows simple analytic solutions for compressible, viscosity dominated 
flows. Agreement with available experiments and results of numerical simulations was 
shown to be very good. 
 In very long micro-channels, or pipes exhausting to a low-pressure environment, 
with the inlet pressure comparable with atmospheric conditions, gas flow may happen to 
pass through all regimes mentioned above. In such a case it is highly desirable to have a 
model for the slip boundary condition, which would cover all regimes of flow, from 
continuum one, to free molecular flow. The first model of this kind was proposed by 
Beskok and Karniadakis [3]. The model was introduced on a purely empirical basis in the 
form of a "rarefaction coefficient", by means of which the expression for the mass flow 
rate, obtained for relatively small values of the Knudsen number in the slip-flow regime, is 
"corrected" so as to embody the entire Knudsen number regime. The results obtained for 
volumetric and mass flow rate as well as for the pressure distribution are fitted well with 
the results of the direct-simulation Monte Carlo (DSMC) method and the solutions of 
linearized Boltzmann equation. 

In this paper we make another attempt to cover the entire Knudsen number range 
by modeling the slip boundary condition via a fractional derivative. For this purpose we 
define a version of Caputo derivative [4] whose order α  is either a function of the local 
value of the Knudsen number in the channel, or a function of the appropriately defined 
average value of the Knudsen number in the pipe. For 0=α  boundary conditions are 
classical, no-slip boundary conditions in the continuum model, while as −→α 1  the 
Knudsen number approaches infinity and the flow becomes a free molecular flow. 
According to our knowledge such an application of a fractional derivative is specific, 
because they are mostly used for modeling the rheological properties of different 
viscoelastic materials and in modeling various phenomena in many branches of physics by 
fractional order differential equations. Thus, the analysis presented in this paper adds to 
the vast variety of applications of fractional derivatives and opens a new ground for 
describing complex flow phenomena in rarefied gas dynamics. 
In what follows we will make a presentation of our own results of investigation of the 
modeling of slip boundary condition in rarefied gas flow by using fractional-order 
derivatives in micro-channels and micro-pipes, published previously in [5] and [6]. 
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2 MICRO-FLOW IN A CHANNEL 

 The problem considered here in is depicted in Fig.1. h  and l  are the height and 
the length of the channel respectively, )y,x(u  is the velocity component in x - direction, 

and ip  and ep  are the inlet and the exit pressures, respectively. If we assume that 

l<<h  and that the reference Mach number is low enough we may use the so-called 
lubrication approximation to describe the isothermal flow in the channel: 

,
dx
dp

y
u
2

2

=
∂
∂

µ                  (1) 

where µ  is viscosity and )x(p  is the pressure. In addition to (1) we will also use the 
continuity equation for a compressible medium. In this simple case of flow it states that the 

mass flow rate through the channel 
.

M  is constant, and for simplicity we will not quote it 
here. 
 It should be noted at this point that, strictly speaking, Navier-Stokes equations and 
their approximate forms, like (1), cannot accurately describe the flow of a rarefied gas, 
except in the limit 0→Kn . There are more advanced equations whose validity covers a 
wider range of the Knudsen number, like Burnett, quasi-gasdynamic equations, and others. 
However, they are much more complicated, are higher in order, and thus require the 
additional boundary conditions which are difficult to define. On the other hand the method 
of the direct simulation Monte Carlo, based on the molecular description, is 
computationally much expensive. There has been a tendency in the literature for some time 
to use the Navier-Stokes equations (in spite of their insufficiency) with modified - slip 
boundary conditions, in order to cover a wide range of Knudsen number, and possibly to 
cover the entire range, from zero to infinity, in an empirical way. As mentioned in the 
Introduction, the papers by Beskok and Karniadakis [3], and Djordjevic [5], [6], belong to 
this category. 
 One of the boundary conditions for the solution of Equ. (1) is the symmetry 
boundary condition: 

:
2
hy =     .0

y
u
=

∂
∂

                  (2) 

Since the flow in the channel is rarefied, the other condition is the slip boundary condition: 
 :0y =      ).x(uu 0=                     (3) 

 Many efforts have been made in the literature to model the slip velocity )x(u 0 . 
By considering the tangential momentum flux near the wall Beskok et al. [2] proposed the 
following model for an isothermal wall at rest: 
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Fig. 1:  Flow of the rarefied gas in a micro-channel. 
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where )x(λ  is the mean free path and 1.const0 <=σ<  is the so-called 
accommodation coefficient. When ),x(u λ  is expanded into a power series about 0y =  
we get from above: 
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 This model gives very good results, which are in agreement with both numerical 
simulations, and experiments in the slip-flow regime ( 1.0Kn10 3 <<− ). 

 As stated in the Introduction, in this paper we wish to extend the validity of the 
solution of Equ. (1) far above the slip-flow regime. For this purpose we will define a 
version of Caputo derivative in the following way (cf. [4]): 

( )∫
λ

α−

η=

α
λ η−η

∂
∂

=
)x(

y

)x(

y

)(
y ,dy

y
u)u(C               (5) 

with λ≤≤ y0  and ,10 <α≤ , and we will assume the slip velocity (3) as: 

).u(Ch2u )(
00

α
λ

α

σ
σ−

=                  (6) 

 Note that the order of the derivative α  is a function of x . Actually we wish to 
make a direct relation of α  with the Knudsen number h/)x(Kn λ= : )Kn(α=α  in 
such a way that 0)0( =α  so that (6) reduces to no-slip boundary condition associated 
with continuum flow, and that −→α 1  as ∞→Kn  - the situation pertinent to the free 
molecular flow. Thus, in order to cover the entire range of the Knudsen number variations 
by the slip condition (6) we adjust the order of the fractional derivative (5) to the local 
value of the Knudsen number in every cross section of the channel. The coefficient in 
front of the fractional derivative (6) is added due to dimensional purposes and in order to 
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make our results coincide with the results obtained in [2] in the slip-flow regime. At that 
our expectations are based upon the known property of fractional derivatives that they 
reflect a property of a function over a finite interval ( )x(y0 λ≤≤  in this case), contrary 
to integer order derivatives, applied for modeling the slip velocity in (4), which represent 
some local properties of a function. 

3 RESULTS AND DISCUSION FOR MICRO-CHANNELS  

 Mathematical problem defined by Equ. (1) and boundary conditions (2) and (6) is 
well posed and simple. We can straightforwardly obtain the following results, in order as 
they appear in the solution procedure: 

- slip velocity: 

K
dx
dp

2
h2u

2

0 µ
−

σ
σ−

=                       (7) 

- velocity profile: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
σ
σ−

+−
µ

−
= K2

h
y

h
y

dx
dp

2
hu 2

22

                            (8) 

- volume flow rate: 

⎟
⎠
⎞

⎜
⎝
⎛

σ
σ−

+
µ

−
== ∫ K261

dx
dp

12
hudy2Q

32h

0

.
                            (9) 

- mass flow rate: 

 ⎟
⎠
⎞

⎜
⎝
⎛

σ
σ−

+
µ
−

==ρ= K261
dx
dpp

RT12
hQ

RT
pQM

3...
                         (10) 

 
where: K = ),2/(Kn2)1/(Kn )2()1( α−−α− α−α−  R  is gas constant, T  is gas 
temperature, supposedly constant, and where the equation of state for an ideal gas in the 
form: RTp ρ=  is used. As well known [7], Knudsen number is inversely proportional to 
the pressure for an isothermal flow. Thus, P/KeKn = , where Ke  is the reference 
Knudsen number taken at the exit cross section of the channel, and ep/pP = . 

 Our next step is to choose )Kn(α  so as to achieve the best fit with available 
experiments and numerical simulations. For 1Kn <<  we assume that )Kn(α  allows the 
following expansion: 
 ( ))Kn(OKna1aKn 2

1
2 ++=α                          (11) 

 The corresponding (first order) expansion for K  can be readily obtained to be: 
 ( ) ).KnlnKn(OKnln1aKnKnKnK 432 +−+−=                          (12) 
 As noticed in the Introduction the mass flow rate (10) is constant according to 
continuity equation. If (12) is inserted into (10) and the resulting differential equation for 
the pressure is integrated between the inlet cross section ( 0x = ) where 
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eii p/pPP ==  and the exit cross section ( l=x ) where 1P = , we get as the first 
order solution: 

,
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P
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where lRT24/)1P(phM 2
i

2
e

3
0

.
µ−=  represents the mass flow rate through the 

channel with neglected rarefaction effects. Thus, the expression (13) is actually a relative 
increase of the mass flow rate due to the slip of flow on the channel walls. This increase is 
plotted in Fig. 2 against the overall pressure ratio iP  for two values of Ke , 1=σ  
(relatively rough surface!) and the fitted value for the coefficient 6.4a = . While our 
theory overpredicts the theory presented in [2] only slightly for relatively small value of 

075.0Ke = , the overprediction for a large value of 165.0Ke =  is much more 
pronounced, and is in a much better agreement with experiments conducted by Arkilic et 
al. [8]. 
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Figure 2. Comparison of the results for the relative increase of the mass flow rate through 
the channel with the results by Beskok et al. [9], and with experiments. 
 
 For 1Kn >>  we assume that )Kn(α  allows the following asymptotic expansion: 

 .)Kn(O
Kn
b

1
aKn

b1 21 ⎟
⎠
⎞

⎜
⎝
⎛ ++=α− −                          (14) 

 Then the corresponding first order expansion for K  reads: 

 ).1(OKnln)
a
b21(Kn)2

b
a(K +−+−=                           (15) 

 Inserting this expression into (9) we get the volume flow rate through the channel: 

 .)1(OKnln)
a
b21(Kn)2

b
a(2

dx
dp

2
hQ

3.

⎥⎦
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 In Fig.3 we compare this volume flow rate with the results of DSMC calculations 
for 1=σ  and the fitted value of 08.1b = . The agreement for 10Kn >  is excellent. In 
the same figure we plot our first order solution for 1Kn <<  ((12) inserted into (9)) and 
also get an excellent agreement with DSMC calculation. We conclude also that our first 
order solution (16) offers an excellent approximation for the volume flow rate in the whole 
interval ,2.0Kn0 ≤≤  while the high order solution given in [2] fails to provide 
satisfactory results for 1.0Kn > . 
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Figure 3. Comparison of the results for the volume flow rate with the results by Beskok et 

al. [2] and with DSMC simulations, in the entire Knudsen number range.  
 

 
 Encouraged by that we are now able to propose a rational function as an 
approximation for )Kn(α , which allows both expansion (11) and expansion (14). It 
reads: 

 2

2

aKnbKn1
aKn

++
=α                              (17) 

with 6.4a =  and 08.1b = , and covers the entire range of variations of the Knudsen 
number. Calculations by using (17) are plotted in Fig.3 and checked against DSMC 
results. The agreement in the entire range of the Knudsen number is obvious. 
 

4 MICRO-FLOW IN A PIPE 

 Under the same physical conditions as in the case of channel flow (s. Sec. 2) the 
governing equation for the pipe flow, with the same notations, reads: 
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 ,1
dx
dp

r
ur

rr
=⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂µ                  (18) 

where r  is the radial coordinate. The boundary conditions that correspond to (2) and (3) 
for the channel flow are, respectively: 

 ).(:,0:0 0 xuuar
r
ur ===
∂
∂

=  

 The solution of (18) for any value of the slip velocity )(0 xu  reads: 

 ( ),2
4
1)(0 yay

dx
dpxuu −−=

µ
                           (19) 

where y=a-r is the distance from the wall. We now model the slip velocity as in the case of 
channel flow (6): 

 α

σ
σ au −

=
2

0 ),()(
0 uC α

λ                             (20) 

where )()( uCo
α
λ   is defined exactly as in (5). 

 In the case of channel flow the order of the derivative α   was a function of x  via 
the local value of the Knudsen number in the channel. However, there is a lack of precise 
experimental data in the case of micro-pipe flow. As a rule, all characteristic quantities in 
this case are given in terms of the average value of this number – the value computed at 
the average pressure in the pipe. This also holds for the data obtained by numerical 
simulations, and for the results obtained from the linearized Boltzmann equation. That is 
why we will now assume that α  is a function of the average Knudsen number in the pipe, 

which will be denoted by nK~ , and thus is a constant for any particular case of flow. 
 
5 RESULTS AND DISCUSSION FOR MICRO-PIPES 
 
 The problem posed by (19) and (20) can be easily solved. At that the following 
results are straightforwardly obtained for: 
 - slip velocity: 

 ,~
2

2 2

0 K
dx
dpau

µσ
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−=  

 - velocity profile: 
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 - volume flow rate: 

 ,~241
8

2
4

0

⎟
⎠
⎞

⎜
⎝
⎛ −
+−== ∫ K

dx
dpaudrrQ

a

σ
σ

µ
ππ&  

 - average velocity: 
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 - and the mass flow rate approximately evaluated with the average density ρ~  in 
the pipe: 

 ,~241~
8

~~
4

⎟
⎠
⎞

⎜
⎝
⎛ −
+−==≈ K

dx
dpp

RT
aQ

RT
pQM

σ
σ

µ
πρ &&&              (21) 

where: ( ) ( ) ( ) ( ) ( ) 2/~,2/~1/~~ 21
ei pppnKnKK +=−−−= −− αα αα  is the average 

pressure in the pipe ( −ip inlet pressure, −ep  exit pressure), and where the equation of 

state for an ideal gas in the form: RTp ρ~~ =  is used. As well known [7], the following 
relation for the average Knudsen number holds: 

,
2~

~ RT
pa

nK πµ
=  

which means that it is simply inversely proportional to the average pressure for an 
isothermal flow. 
 According to the continuity equation the mass flow rate is constant, and we can 
easily integrate the expression (21) between 0=x  and lx = , and get: 
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 We can further write this expression in nondimensional form by employing two 
well-established formulas for the mass flow rate CM&  in the continuum flow ( 0~ =nK ), 

and FMM&  in the free molecular flow ( ∞→nK~ ): 
 

RTl
aM C µ
π

16

4

=& ( 22
ei pp − ), 

( )
,2

3
4 3

RTl
ppa

M ei
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and get: 
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 Our next step is to choose ( )nK~α  so as to achieve the best fit with available results 
in the literature. More precisely, we wish to fit our results with the solutions of linearized 
Boltzmann equation obtained by Loyalka and Hamoodi [9]. For 1~ >>nK  we assume that 

( )nK~α  allows the following asymptotic expansion: 

...~1 toh
nK

A
+−=α                          (23) 

where A  is an arbitrary constant. Then it can be routinely shown that the corresponding 
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expansion for K~  is: 
 

( ) ...~ln1~1~ tohAnKAnK
A

AK ++−+
−

=  

 If this is now inserted into the second of Equ. (22) for 1=σ , and the condition: as 

FMMMnK && →∞→ ,~
 applied, the following value for the constant A  is obtained: 

.3707.03/)163( ≈+= ππA  A more precise analysis shows that the form of the first 
two terms in (23) is the only one, which leads to a finite value for the mass flow rate when 

.~ ∞→nK  

 For 1~ <<nK  we assume the following expansion for :)~( nKα  

 ...~ tohnKB n +=α                              (24) 

with .1>n  Then the expansion for K~  is: 

 ( ) ...~ln1~~
2
1~~ 12 tohnKnKBnKnKK n +−+−= +  

 When only the first two terms in this expansion are included into the calculations, 
one may easily verify that the obtained results coincide exactly with the ones obtained in 
the slip-flow regime by using the boundary condition (4). The sense of introducing the 
coefficient ( σσ /)2 −  in our boundary condition (20) is just the need for the two 
solutions to coincide in this flow regime. However, while the series (4) truncates at the 
second term in this case of flow, because the velocity profile is parabolic, we have more 
terms of higher order in our expansion for K~ . These terms may serve as a correction 
when one wishes to extend the validity of the theory to higher values of nK~ . If this is 
done by using the first three terms, then the fitting with the results of Loyalka and 
Hamoodi [9] stated in [7] (s. Fig. 5.11), in the interval 3.0~0 ≤≤ nK  gives the following 
values for B  and n : .8.1,9.1 == nB  

 Encouraged by that we are now able to propose the dependence )~( nKα , which 
would cover the entire Knudsen number range: 

 ,~~1

~
1 nn

n

nKBnKAB
nKB
++

=
−

α                             (25) 

with numerical values for the constants BA,  and n  as above. One may easily verify that 
(25)   allows both expansions (23) and (24). By using this dependence we now plot 

FMMM && /  versus nK~  in Fig. 4, and compare our results with the solutions obtained in 
[9]. The agreement is very good, because the deviations do not exceed 5%. The so-called 
Knudsen minimum is not pronounced in this case of flow as it is in micro-channel flow 
case [5], but it is still clearly evidenced, and takes place approximately at .4~ ≈nK . 
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Figure 4. Mass flow rate made nondimensional by its free molecular value versus the 

average Knudsen number in the pipe, and its comparison with the solution of linearized 
Boltzmann equation [9] ( )8.1,9.1,3707.0 === nBA . 
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Figure 5. Velocity profiles in the pipe made nondimensional by the average velocity for 
different values of the average Knudsen number, and their comparison with the solution of 
linearized Boltzmann equation [9]. 
 
 Finally, in Fig. 5 we plot velocity profiles in the pipe made nondimensional by 
means of the average velocity U , for different values of the average Knudsen number. 
 We note an extensive increase of the slip velocity with the increase of the Knudsen 
number, and simultaneous decrease of the maximum velocity at the axis, so that 
approximately for 10~ >nK  the profile is almost uniform. The agreement with the results 
by Loyalka and Hamudi [9] obtained from the linearized Boltzmann equation is very good 
in this case also. 
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5 CONCLUSIONS 

  We have demonstrated in this paper that fractional derivatives can be successfully 
utilized for modeling the slip velocity in rarefied gas flow in channels and pipes at micro 
and nano scales. By defining a version of Caputo derivative and by adjusting its order to 
the local value of the Knudsen number in the channel, or with its average value in the pipe, 
we are able to cover the entire range of the Knudsen number, from the continuum flow to 
the free molecular flow, by employing a single, wall slip boundary condition. The 
procedure carried out in this paper points out to the possibility that fractional derivatives 
can be in the same manner used for the solution of some other, more complex problems of 
rarefied gas dynamics. In addition, employment of fractional derivatives conducted in this 
paper is specific in that fractional derivative is neither used for modeling rheological 
properties of viscoelastic materials, nor it is used for modification of various differential 
equations that appear in the mathematical physics. Thus, such employment enriches the list 
of applications of this noticeable mathematical apparatus in physics 
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