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Summary. It is pointed out that the number of possible chemical compounds is 
so enormously large that there is no chance that even a tiny fraction thereof will 
ever be produced and investigated experimentally. The only way to learn about the 
properties of a reasonable large number of chemical species is to study them by 
mathematical models. Such a mathematical model, developed by the author, is 
presented in detail. This model is essentially nonlinear. 
Total π-electron energy E (as computed within the Hückel molecular orbital 
approximation) is a quantum chemical characteristic of unsaturated conjugated 
compounds whose dependence on molecular structure can be deduced and 
analyzed by means of algebraic graph theory. It is shown that E depends - in a 
perplexed, but mathematically well-defined manner - on a large number of 
molecular structural features. The mathematical representations of these 
structural features are the so-called Sachs graphs. Some of these Sachs graphs 
correspond to the cycles contained in the underlying molecule. This makes it 
possible to “extract” the energy-effect of each particular cycle from the total 
energy and thus to measure the cyclic conjugation in individual cycles of a 
polycyclic conjugated molecule. 

Keywords: Chemistry, mathematical modeling, conjugated molecules, 
energy effect of cycle. 

 

1  INTRODUCTION: A WEIRD VIEW ON CHEMISTRY 

 
Chemistry is a two thousand years old science. Yet, the vast majority of results 

that  chemistry has achieved was obtained in the second half of the 20th century and in the 
first years of this century. The enormous expansion of chemistry is best reflected in the 
claim that of all chemists who ever lived, the majority is still alive. Until now about 21 
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million different chemical compounds were either synthesized in laboratory or isolated 
from various natural products. Every day dozens of new chemical compounds are 
obtained and their properties investigated, a remarkable achievement indeed. 

 
Yet, the coin has also another side. Already in the 19th century the basic laws of 

chemistry were discovered, including those that determine the structure of molecules. 
Knowing the rules by which atoms are joined to form molecules, chemists are able to 
predict the possible structures that molecules may possess. It turned out that the number of 
possible molecular structures (and thus the number of possible chemical compounds) is far 
beyond what the greatest optimists of the 19th century could imagine. After the theory of 
isomer enumeration was completed (in the 1930s, for details see the book [1]) we know, 
for instance, that there may exist 328092 distinct alcohols C15H31OH and 110500 distinct 
acids C14H29COOH, from which 328092 х 110500 different esters could be produced. 
Cyclic and polycyclic compounds are much more numerous. According to a recently 
published theoretical enumeration, there are 7 х 1021 possible benzenoid hydrocarbons 
with up to 35 six-membered rings. Of these only about 1000 have been actually prepared. 
With biomolecules the situation is even worse: There are 4100000 possible DNA-chains 
consisting of (only!!!) 100,000 base-pairs. There are 20100 possible proteins consisting of 
(only!!!) 100 amino acids. The number of possible chemical compounds is far greater than 
the number of nucleons in the (known) universe. Therefore the 108-109 chemical species 
that will be (perhaps) produced until the end of our civilization is negligibly small 
compared to the number of possible – virtual – chemical compounds. The vast majority of 
chemical compounds will never be synthesized. We thus arrive at the conclusion that 
 

Chemistry is the science of virtual objects – chemical compounds 
 

of which only a negligibly small fraction will (ever) be produced in reality and studied 
experimentally. 

The enormous disbalance between the number of existing and possible chemical 
species has a consequence that the true problem of chemistry is no more to synthesize a 
given compound, but to decide which compound to synthesize. In order to choose the 
potentially interesting compounds from combinatorial libraries consisting of millions or 
billions of imagined (but not yet existent) compounds, one must employ some very fast 
and computationally inexpensive method, that needs not be exact, but that is required to 
reproduce the main, chemically relevant, properties of a virtual chemical compound.  Such 
methods must necessarily be based on suitably chosen mathematical models.  

Chemistry is a science. Thus, one of its goals must be to discover regularities that 
are valid for large classes of chemical compounds, so called “laws”. Because the objects 
of chemistry are virtual (with a few exceptions, that exist in reality), the only way in 
which chemical “laws” can be treated is mathematical reasoning. Today most colleagues 
will disagree, but in the years ahead of us it will become more and more evident that  
 

the main tool of chemistry is mathematics 
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and that 
 

mathematical chemistry is the main part of chemistry. 
 

Until these days come, we have to aim at much more humble targets. In what follows 
we describe a mathematical model of cyclic conjugation in polycyclic conjugated 
molecules. This model makes it possible to calculate the energy-effects arising from cyclic 
conjugation in individual cycles. After some early attempts [2-5], the model was 
formulated in 1977 [6,7] and since then extensively studied, elaborated, and applied by the 
present author and his coworkers [8-46]. A chemist-friendly review has also recently been 
published [47]. 

2   SOME CONCEPTS FROM CHEMICAL GRAPH THEORY 

 
 It is one of the paradigms of chemistry that molecular structure determines the 
(physical, chemical, pharmacological, ...) properties of the corresponding substance, 
provided, of course, that this substance consists of molecules. Thus, from the known 
molecular structure, the properties of substances should be predictable. Although much 
success along these lines has been achieved and much knowledge accumulated, we are 
still very far from the complete solution of the problem. [In contemporary chemical 
literature two acronyms are often encountered: QSPR = Quantitative Structure Property 
Relations and QSAR = Quantitative Structure Activity Relations. Under "property" are 
meant the physical and chemical properties, whereas "activity" refers to pharmacological, 
biological, medicinal, toxicological, and similar properties.] 
 
 In what follows we consider a special problem in QSPR research, namely the finding 
of the (quantitative) connection between the structure of a polycyclic conjugated 
hydrocarbon and its total π-electron energy E. Although E cannot be directly measured, it 
is known to be reasonably well related to the experimentally accessible thermodynamic 
data [48-51]. 
 
 The total π-electron energy considered here is computed by means of the tight-
binding Hückel molecular orbital (HMO) approximation and is, as usual, expressed in the 
units of the carbon-carbon resonance integral β. Within the HMO model it is possible to 
employ the mathematical apparatus of graph spectral theory. Details on this matter can be 
found in the books [1,49,52-54]. 
 

For the present considerations the actual value of the parameter β is not 
important, except that its value is negative. We nevertheless mention that for 
thermochemical purposes the recommended value of β is -137.00 kJ/mol and that the heats 
of atomization computed by the HMO method are accurate to 0.1%, implying that E is 
accurate up to ±0.005 β units [48]. Thus, the greater is E, the higher is the thermodynamic 
stability of the respective compound; structural factors increasing (resp. decreasing) the 
value of E increase (resp. decrease) the thermodynamic stability. 
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It is possible the find a direct relation between molecular structure and E, and by 
means of this relation to determine the effect of certain structural details on the numerical 
value of E. Among these structural details are also the cycles contained in the molecules 
and, consequently, one may speak of the energy effect of these cycles. Such an analysis is 
performed by means of the mathematical apparatus of graph theory, or more specifically: 
of graph spectral theory [55]. Therefore, in order to be able to present the results on the 
structure-dependence of E, we must specify a few basic notions of graph theory and graph 
spectral theory. More details can be found in the books [1,49,55]. 
 

A conjugated hydrocarbon is represented by its molecular graph. The construction of 
such a graph should be evident from the example shown in Fig. 1.  

 

G  
Figure 1. The structural formula of biphenylene and the corresponding molecular graph 
G1. The graph G1 has n=12 vertices and m=14 edges. The vertices of G1 represent the 
carbon atoms, whereas its edges represent the carbon-carbon bonds of biphenylene. 
 
 

The number of vertices of a molecular graph G is denoted by n. Two vertices 
connected by an edge are said to be adjacent. 

If the vertices of the graph G are labeled by v1, v2,..., vn, then the structure of G can be 
represented by the adjacency matrix A = A(G) = ||Aij||. This is a square matrix of order n, 
whose elements Aij are defined so that Aij=Aji=1 if the vertices vi and vj are adjacent, and 
Aij=0 otherwise. For an example see Fig. 2. 

The characteristic polynomial of the graph G, denoted by Φ(G,x) is equal to the 
determinant det(xI-A) where I is the unit matrix. It can be shown that Φ(G,x) is a monic 
polynomial in the variable x, of degree n. For an example see Fig. 2. 

The numbers x1, x2,...,xn, obtained by solving the equation Φ(G,x)=0, are the 
eigenvalues of the graph G. These eigenvalues form the spectrum of G. For an example 
see Fig. 2. 

It can be shown that, in the majority of chemically interesting cases, the HMO total π-
electron energy is related to the eigenvalues of the molecular graph as 
 

           ∑= ixE 2                                                                                                  (1) 

 
where the summation goes over the positive-valued eigenvalues of the molecular graph. 
Another neat way in which Eq. (1) can be written is 
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where now the summation embraces all graph eigenvalues.  
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Figure 2. A graph G2 and its adjacency matrix A(G2). It can be computed (but not easily) 
that the characteristic polynomial of G2 is Φ(G2,x) = x5 - 5 x3 + 2 x . The solutions of the 
equation x5 - 5 x3 + 2 x = 0   are   x1=[(5 + √17)/2]1/2 = 2.13578,   x2=[(5 - √17)/2]1/2 = 
0.66215,   x3=0,   x4=-[(5 - √17)/2]1/2 = -0.66215   and   x5=-[(5 + √17)/2]1/2 = -2.13578.  
These five numbers are the eigenvalues of the graph G2 and form the spectrum of G2. 
 

Thanks to the symmetric form of Eq. (2), the HMO total π-electron energy E is 
particularly suitable for mathematics-based investigations; for details and an exhaustive 
list of references see in the recent review [51]. The first significant result in this area was 
obtained by the British mathematician and theoretical chemist Charles Coulson, as early as 
in 1940. Coulson found a connection between E and the characteristic polynomial of the 
molecular graph: 
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In formula (3), Φ' stands for the first derivative of the characteristic polynomial, and i for 
the imaginary unit, i=√-1. 

A quarter of century later, the German mathematician Horst Sachs discovered the 
way in which the characteristic polynomial of a graph depends on its structure. His result, 
nowadays referred to as the Sachs theorem [1,55,56], reads as follows: 
 
          ∑ −−+=Φ

S

SnnScSpn xxxG )()()( 2)1(),(                                                       (4) 

 

where the summation goes over all so-called Sachs graphs of the graph G. These Sachs 
graphs, essential for the present considerations, are defined below.  
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One should note that the Sachs theorem played (and still plays) a very important role 
in the theory of conjugated molecules and in theoretical chemistry in general. After this 
theorem was made known to the chemical community [57], more than a thousand 
publications followed, in which the theorem was applied to chemical problems. Also the 
results outlined in this article belong to the applications of the Sachs theorem. In a recent 
review [56], an extensive (but far from complete) bibliography of the chemical 
applications of the Sachs theorem can be found. 

By K2 is denoted the graph consisting of two vertices, connected by an edge. By Cn 
is denoted the cycle possessing n vertices, n=3,4,5,..., see Fig. 3. 
 

 
 
Figure 3. Components of the Sachs graphs. Any Sachs graph consists of components that 
are K2 and/or C3 and/or C4 and/or ...  , see Fig. 4. 
 
 

A graph in which each component is K2 or C3 or C4 or C5 or ... is called a Sachs 
graph. Some of these Sachs graphs are contained in the molecular graph; examples are 
found in Fig. 4. 
 

S S S
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Figure 4. Examples of Sachs graphs (indicated by tick lines) contained in the biphenylene 
graph G1. The biphenylene graph contains a total of 514 Sachs graphs. Each of these 
graphs can be understood as representing a structural feature of the respective molecule. 
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In formula (4), p(S), c(S), and n(S) are the number of components, cyclic components 
and vertices, respectively, of the Sachs graph S. For instance, the Sachs graphs S1, S4, S7, 
and S9 (depicted in Fig. 4), have, respectively, 1, 6, 3, and 2 components, 0, 0, 1, and 2 
cyclic components, and 2, 12, 10, and 12 vertices. 
 

When formulas (3) and (4) are combined, one arrives at an explicit expression, 
connecting the total π-electron energy with molecular structure: 
 

           dxxxE
S

SnScSp∫ ∑
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                                          (5) 

 

Each Sachs graph can be understood as representing a particular structural detail of 
the underlying molecule. Some of these structural details are those familiar to every 
chemist. For instance, S1 and S2 in Fig. 4 pertain to two distinct carbon-carbon bonds of 
biphenylene, S6 corresponds to one of its six-membered rings, S4 and S5 can be viewed as 
representing two of its Kekulé structural formulas. However, most Sachs graphs have no 
usual chemical interpretation. Yet, all such structural details play role in determining the 
magnitude of the total π-electron energy, and thus are responsible for the thermodynamic 
stability of the respective molecule.  

Formula (5) represents the mathematically complete solution of the structure-
dependence problem of a molecular property, in this particular case - of the HMO total π-
electron energy. There exist very few QSPR results of this kind. 

What can we learn from formula (5)? 
First of all, the dependence of E on various (precisely determined) structural details 

of the underlying molecule is nonlinear. In particular, E is not equal to the sum of the 
effects of individual structural details. (The author experienced on many occasions the 
dissatisfaction of chemists because of this fact. Evidently, linear models are more popular 
among chemists, and scholars who design linear chemical models get a greater and sooner 
recognition. This author’s reply to such “criticism” was always that we just model a 
natural phenomenon, and that we are not responsible for the nonlinearity of the 
phenomenon itself.) 
 

Next, formula (5) shows that the relation between total π-electron energy and 
molecular structure is extremely complicated. [In our opinion, the true relation between 
any molecular property and molecular structure is extremely complicated, only usually we 
are not aware of this fact.] Formula (5) precisely identifies all structural details that 
influence the total π-electron energy. As already mentioned, some of these are familiar: 
bonds, rings, Kekulé structures. Most of them are exotic, never anticipated by "intuitively 
thinking" chemists. Formula (5) reveals the plenitude of (relevant) information contained 
in a molecular structure, most of which chemist would never recognize without utilizing 
graph spectral theory. 
 

Formula (5) shows the precise mathematical form by which each structural feature 
influences the value of E. Thus from it we could make quantitative inferences. In 
particular, it is possible to express the effect of an individual cycle (contained in the 
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molecular graph) on E.  

3 ENERGY EFFECTS OF CYCLIC CONJUGATION 

Long time ago chemists have recognized that cyclic π-electron systems exhibit very 
large stabilization or destabilization relative to their acyclic analogs. The pairs benzene vs. 
hexatriene (stabilization) and cyclobutadiene vs. butadiene (destabilization) are textbook 
examples. Already in the 1930s Hückel formulated his 4m+2 rule, claiming that 
monocyclic conjugated systems are stable if they possess 4m+2 (i. e., 2, 6, 10, 14, ...) π-
electrons, and are unstable if the number of π-electrons is 4m (i. e., 4, 8, 12, ...). That this 
is an energy-based effect was demonstrated in the 1960s [58]. 
 

Extending the Hückel rule to polycyclic conjugated molecules became possible only 
after graph theory was applied in molecular orbital theory, more precisely: after Eq. (5) 
was discovered.  
 

Using the fortunate fact that the total π-electron energy depends on Sachs-graph-type 
structural features, and that (some) Sachs graphs consist of cycles, it was possible to 
express the effect of a particular cycle C, contained in the molecular graph G, on the 
respective E-value [3,5,6,7,12,13,23]. 
 

Denote the set of all Sachs graphs of the molecular graph G by S = S(G). Formula 
(5) can be understood as an expression showing how the elements of the set S determine 
E. We may write formula (5) in an abbreviated form as: 
  

          E = f(S) . 
 

Denote by SC the subset of S, consisting of only those Sachs graphs which contain the 
cycle C, and consider the expression f(S \ SC). This expression contains the effects of all 
Sachs graphs on E, except the effects coming from the cycle C. In other words, f(S \ SC) is 
an energy-like quantity resulting from the effects of all relevant structural details of the 
underlying molecule, except from the effects of the cycle C. Consequently, the difference 
 

          ef = f(S ) - f(S \ SC)   
 

may be interpreted as the effect of the cycle C on the HMO total π-electron energy. It can 
be shown that [6,7]: 
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+0.1586 +0.1586+0.0534

+0.0275 +0.0275

+0.4596 +0.4596-0.1597

-0.0678 -0.0678 -0.0480

+0.0198

 
 
 

Figure 5. The energy-effects of the cycles of phenanthrene and biphenylene, expressed in 
the units of the HMO resonance integral β. 
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In Eq. (6) G-C denotes the subgraph obtained by deleting the cycle C from the graph G. 
Whenever ef(G,C) is positive, the cycle C stabilizes the molecule; negative ef-values 
imply destabilization.  
 
In Fig. 5 are given the energy-effects of two typical polycyclic conjugated systems.  
 
 

The examples shown in Fig. 5 illustrate some basic properties of cyclic 
conjugation. 
 
(a) Not only rings, but also larger cycles (often ignored by chemists) have their energy 
contributions.  
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(b) The energy-effect usually decreases with increasing size of the cycle, but has a non-
negligible value also for cycles of larger size. 
 
(c) Cycles of the same size may have significantly different energy-effects. 
 
(d) In the examples shown in Fig. 5, the 6-, 10- and 14-membered cycles have a 
stabilizing effect, and the 4-, 8- and 12-membered cycles a destabilizing effect. This is in 
full agreement with the Hückel 4m+2 rule. 
 
(e) However, contrary to what chemists may expect based on their "intuition", the Hückel 
4m+2 rule is not generally obeyed. Surprisingly, only the following result could be 
rigorously proven [9]: 
 
(f) In all alternant polycyclic conjugated hydrocarbons, cycles of size 4, 8, 12, 16, ... 
always have a negative ef-value and thus always destabilize the respective molecule. (This 
is just one half of the Hückel 4m+2 rule.) 
 
(g) In the majority of cases, cycles of size 6, 10, 14, 18, ... have a stabilizing effect. 
However, there exist exceptions, namely alternant polycyclic conjugated hydrocarbons in 
which some of the (4m+2)-membered cycles have a destabilizing energy-effect and thus 
violate the Hückel 4m+2 rule [28].  
 

*   *   * 
Although the results (f) and (g) can be stated and made understandable without any 

mathematical formalism, they hardly could have been deduced without use of 
mathematical reasoning. These results could be viewed as examples of what chemistry 
may gain from mathematics:  
 

Over half a century, chemists believed that a certain regularity holds and is generally 
valid. Only a couple of years after a couple of mathematical chemists started to apply 
graph theory, it could be shown that one half of the regularity is generally valid (and is 
thus a law on Nature), whereas the other half is not. 
 

*   *   * 
 

Almost at the same time when Eq. (6) was discovered [5-7] and applied to various 
chemical problems, the Japanese chemist Jun-ichi Aihara proposed a similar, yet not 
equivalent, approach [59]. According to it, the energy-effect of a cycle C is computed as 
 
          efA = f(Sac U SC ) - f(Sac)   
 
where Sac is the set of all Sachs graphs (of the molecular graph G), which do not contain 
any cycle. This would lead to the expression: 
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where α(G,x) is the matching polynomial of the graph G. For details on the matching 
polynomial see [1,49]. As a curiosity we mention that Aihara needed about 30 years to 
realize (and publicly announce [60]) that his method (based on efA ) is inferior to our 
(based on  ef). In the paper [60] he demonstrated that the ef-values are in good agreement 
with local magnetic properties of benzenoid molecules. This sheds a new light on the 
physical meaning and chemical applicability of our theory of cyclic conjugation, outlined 
in this paper. 
 

REFERENCES 

[1] Gutman, I. (2003): Uvod u hemijsku teoriju grafova [Introduction to Chemical Graph 
Theory], Faculty of Science Kragujevac, Kragujevac.  

[2] Gutman, I. and Trinajstić, N. (1973): Graph theory and molecular orbitals. The loop 
rule, Chemical Physics Letters, Vol. 20, pp. 257-260.  

[3] Hosoya, H., Hosoi, K. and Gutman, I (1975): A topological index for the total π-
electron energy. Proof of a generalised Hückel rule for an arbitrary network, 
Theoretica Chimica Acta, Vol. 38, pp. 37-47.  

[4]  Gutman, I. and Trinajstić, N. (1976): Graph theory and molecular orbitals. XV. The 
Hückel rule, Journal of Chemical Physics, Vol.  64, pp. 4921-4925. 

[5]  Gutman, I. (1977): Proof of the Hückel rule, Chemical Physics Letters, Vol. 46, pp. 
169-171. 

[6]  Gutman, I. and Bosanac, S. (1977): Quantitative approach to Hückel rule. The relations 
between the cycles of a molecular graph and the thermodynamic stability of a 
conjugated molecule, Tetrahedron, Vol. 33, pp. 1809-1812.  

[7]  Bosanac, S. and Gutman, I. (1977): Effect of a ring on the stability of polycyclic 
conjugated molecules, Zeitschrift für Naturforschung, Vol. 32a, pp. 10-12.  

[8]  Gutman, I. and Bosanac, S. (1977): Quantitative testing of the perimeter rule, Bulletin 
de la Societe Chimique Beograd, Vol. 42, pp. 499-502.  

[9]  Gutman, I. (1979): Effect of cycles on total π-electron energy of alternant conjugated 
hydrocarbons, Journal of the Chemical Society Faraday Transactions II, Vol. 75, pp. 
799-805.  

[10]  Gutman, I. (1979): Two theorems on topological resonance energy, Bulletin de la 
Societe Chimique Beograd, Vol. 44, pp. 173-178.  

[11] Gutman, I. (1980): Effect of cycles on topological resonance energy, Croatica 
Chemica Acta, Vol.53, pp. 581-586.  

[12]  Gutman, I. and Polansky, O. E. (1981): Cyclic conjugation and the Hückel molecular 
orbital model, Theoretica Chimica Acta, Vol. 60, pp. 203-226.  

[13]  Gutman, I. (1984): On cyclic conjugation, Theoretica Chimica Acta, Vol. 66, pp. 43-
49.  

[14]  Gutman, I. and Herndon, W. C. (1984): Note on the contribution of a ring to the 



 
 
 
 
 
 

Ivan Gutman 
 
 
 
 

stability of conjugated molecules, Chemical Physics Letters, Vol. 105, pp. 281-284.  
[15]  Gutman, I. (1985): Overlooked relations in the theory of cyclic conjugation, Chemical 

Physics Letters, Vol. 117, pp. 614-616.  
[16]  Gutman, I. (1985): Cyclic conjugation in porphin, Croatica Chemica Acta, Vol. 58, 

pp. 359-369.  
[17]  Gutman, I. (1990): Nonaromatic benzenoid hydrocarbons, Pure & Applied Chemistry, 

Vol. 62, pp. 429-434.  
[18]  Gutman, I. (1990): Cyclic conjugation in fully benzenoid hydrocarbons, Reports in 

Molecular Theory, Vol. 1, pp. 115-119.  
[19]  Gutman, I. and Agranat, I. (1991): Cyclic conjugation in peropyrenes, Polycyclic 

Aromatic Compounds, Vol. 2, pp. 63-73.  
[20] Gutman, I. and Petrović, V. (1992): Cyclic conjugation in benzo-annelated 

polyacenes, Indian Journal of Chemistry, Vol. 31A, pp. 647-650.  
[21]  Gutman, I. and Petrović, V. (1992): Cyclic conjugation in linear polyacenes, Journal 

of the Serbian Chemical Society, Vol. 57, pp. 495-501.  
[22]  Gutman, I. and Petrović, V. (1993): Cyclic conjugation in zig-zag fibonacenes, Revue 

Roumaine de Chimie, Vol. 38, pp. 439-445.  
[23]  Gutman, I., Petrović, V. and Mohar, B. (1993): Cyclic conjugation effects: individual, 

collective and overall, Chemical Physics Letters, Vol. 203, pp. 378-382.  
[24]  Gutman, I. (1993): Cyclic conjugation in benzenoid hydrocarbons, Bulletin de 

l'Acadèmie Serbe des Sciences et des Arts (Cl. Math. Natur.), Vol. 106, pp. 37-50.  
[25]  Gutman, I. and Lee, S. L. (1993): Cyclic conjugation in circulenes, Bulletin of the 

Institute of Chemistry of the Academia Sinica, Vol. 40, pp. 47-54.  
[26]  Gutman, I. (1993): Hückel rule in catacondensed benzenoid hydrocarbons, MATCH 

Communications in Mathematical and in Computer Chemistry, Vol. 29, pp. 51-60.  
[27]  Gutman, I. and Stanković, M. (1993): Violation of the Hückel rule in alternant 

nonbenzenoid hydrocarbons, Journal of the Serbian Chemical Society, Vol. 58, pp. 
897-903.  

[26]  Gutman, I. and Stanković, M. (1994): On the Hückel (4m+2) rule in polycyclic 
alternant hydrocarbons, Journal of Molecular Structure (Theochem), Vol. 309, pp. 
301-304.  

[29]  Gutman, I. and Stanković, M. (1994): Cyclic conjugation in non-Kekulèan benzenoid 
molecules, Collection of Scientific Papers of the Faculty of Science Kragujevac, 
Vol. 15, pp. 97-104.  

[30]  Gutman, I. (1994): Cyclic conjugation in phenylenes, South African Journal of 
Chemistry, Vol. 47, pp. 53-55.  

[31]  Gutman, I. (1994): Cyclic conjugation in antikekulene and its homologues, Revue 
Roumaine de Chimie, Vol. 39, pp. 943-947.  

[32]  Gutman, I., Cyvin, S. J., Petrović, V. and Teodorović, A. (1994): Fully-naphthalenoid 
hydrocarbons and their conjugation modes, Polycyclic Aromatic Compounds, Vol. 
4, pp. 183-189.  

[33]  Gutman, I., Biedermann, P. U., Ivanov-Petrović, V. and Agranat, I. (1996): Cyclic 
conjugation effects in cyclacenes, Polycyclic Aromatic Compounds, Vol. 8, pp. 189-
202.  

[34]  Gutman, I., Ivanov-Petrović, V. and Pogodin, S. (1996): Unusual conjugation pattern 



 
 
 
 
 
 

Ivan Gutman 
 
 
 
 

in a class of benzenoid hydrocarbons, Indian Journal of Chemistry, Vol. 35A, pp. 
87-92.  

[35]  Gutman, I. (1996): On local aromaticity in phenylenes, Indian Journal of Chemistry, 
Vol. 35A, pp. 909-914.  

[36]  Gutman, I. and Ivanov-Petrović, V. (1997): Clar theory and phenylenes, Journal of 
Molecular Structure (Theochem), Vol. 389, 227-232.  

[37]  Gutman, I. (1998): Cyclic conjugation in dianions: effect of cycles on the 
thermodynamic stability of polycyclic conjugated dianions, Journal of Molecular 
Structure (Theochem), Vol. 428, pp. 241-246.  

[38]  Gutman, I., Marković, Z. and Juranić, I. (1999): A Clar-type regularity for dianions of 
benzenoid hydrocarbons, Polycyclic Aromatic Compounds, Vol. 13, pp. 33-40.  

[39]  Gutman, I. (1999): On the oxidation of dibenzo[fg,ij]pentaphene and 
dinaphtho[2,1,8,7-defg:2',1',8',7'-ijkl]pentaphene dianions, Journal of the Serbian 
Chemical Society, Vol. 64, pp.563-570. 

[40]  Gutman, I., Ivanov-Petrović, V. and Dias, J. R. (2000): Cyclic conjugation in total 
resonant sextet benzenoid hydrocarbons, Polycyclic Aromatic Compounds, Vol. 18, 
221-229. 

[41]  Gutman, I. and Tomović, Ž. (2001): Cyclic conjugation in terminally bent and 
branched phenylenes, Indian Journal of Chemistry, Vol.40A, pp. 678-681. 

[42]  Gutman, I. and Tomović, Ž. (2001): On cyclic conjugation of the members of the 
pyrene/peropyrene series and their formally π-localized derivatives, Bulletin of the 
Chemists and Technologists of Macedonia, Vol. 20, pp. 33-37. 

[43]  Gutman, I., Turković, N. and Jovičić, J. (2004): Cyclic conjugation in benzo-
annelated perylenes: How empty is the "empty" ring?, Monatshefte für Chemie, Vol. 
135, pp. 1389-1394.  

[44]  Gutman, I., Stanković, S., Kovačević, R., Đurđević, J. and Furtula, B. (2005): 
Anomalous cyclic conjugation in benzenoid molecules with a small number of 
Kekulè structures, Indian Journal of Chemistry, Vol. 44A, pp. 1751-1755. 

[45]  Gutman, I., Furtula, B., Đurđevic, J., Kovačević, R. and Stanković, S. (2005): 
Annelated perylenes: Benzenoid molecules violating the Kekulè-structure-based 
cyclic conjugation models, Journal of the Serbian Chemical Society, Vol. 70, pp. 
1023-1031.  

[46]  Đurđević, J., Furtula, B., Gutman, I., Kovačević, R., Stanković, S. and Turković, N. 
(2006): Cyclic conjugation in annelated perylenes, in the book: Gutman, I. (ed.), 
Mathematical Methods in Chemistry, Prijepolje Museum, Prijepolje, 2006, pp. 101-
117. 

[47]  Gutman, I. (2005): Cyclic conjugation energy effects in polycyclic π-electron 
systems, Monatshefte für Chemie, Vol. 136, pp. 1055-1069.  

[48]  Schaad, L. J. and Hess, B. A. (1972) Hückel molecular orbital pi resonance energies. 
The question of the sigma structure. Journal of the American Chemical Society, Vol. 
94, pp. 3068-3074.  

[49]  Gutman, I. and Polansky, O. E. (1986): Mathematical Concepts in Organic 
Chemistry, Springer-Verlag, Berlin. 

[50]  Gutman, I. (1992): Total π-electron energy of benzenoid hydrocarbons. Topics in 
Current Chemistry, Vol. 162, pp. 29-63.  



 
 
 
 
 
 

Ivan Gutman 
 
 
 
 

[51]  Gutman, I. (2005): Topology and stability of conjugated hydrocarbons. The 
dependence of total π-electron energy on molecular topology, Journal of the Serbian 
Chemical Society, Vol. 70, pp. 441-456.  

[52]  Graovac, A., Gutman, I. and Trinajstić, N. (1977): Topological Approach to the 
Chemistry of Conjugated Molecules, Springer-Verlag, Berlin. 

[53]  Coulson, C. A., O'Leary, B. and Mallion, R. B. (1978): Hückel Theory for Organic 
Chemists, Academic Press, London. 

[54]  Dias, J. R. (1993): Molecular Orbital Calculations Using Chemical Graph Theory, 
Springer-Verlag, Berlin. 

[55] Cvetković, D., Doob, M. and Sachs, H. (1980): Spectra of Graphs – Theory and 
Application, Academic Press, New York. 

[56]  Gutman, I. (2003): Impact of the Sachs theorem on theoretical chemistry: A 
participant's testimony, MATCH Communications in Mathematical and in Computer 
Chemistry, Vol. 48, pp. 17-34. 

[57]  Graovac, A., Gutman, I., Trinajstić, N., Živković, T. (1972): Graph theory and 
molecular orbitals. Application of Sachs theorem, Theoretica Chimica Acta, Vol. 
26, pp. 76-78.  

[58]  Breslow, R. and Mohácsi, E. (1963): Studies on d-orbital conjugation. III. Non-
aromaticity of a derivative of the 1,3 dithiepinyl anion, a ten π-electron conjugated 
system, Journal of the American Chemical Society, Vol. 85, pp. 431-434. 

[59]  Aihara, J. (1977): Resonance energies of benzenoid hydrocarbons, Journal of the 
American Chemical Society, Vol. 99, pp. 2048-2053. 

[60]  Aihara, J. (2006): Circuit resonance energy: A key quantity that links energetic and 
magnetic criteria of aromaticity, Journal of the American Chemical Society, Vol. 
128, pp. 2873-2879. 

 
Sent: Sunday, March 05, 2006, 9:17 AM 
 


